
Sharing Data With The Win32 API
by John Chaytor

This article describes an imple-
mentation of data sharing be-

tween Win32 processes running on
Windows 95 or Windows NT which
provides controlled access to com-
mon data and allows for notifica-
tion of data updates. This has been
implemented in two classes: TEnque
which provides access control (via
locking) and TSharedMemory which
provides physical access to the
data. It should be of interest to you
if you want a rather straightfor-
ward method of sharing transient
data between applications on a
workstation. The TEnque object
should be of interest to anyone
needing to serialise access to any
resource between processes.

Special versions of the demon-
stration programs and classes
have been provided for Win16
(Delphi 1) applications which will
run on Win95/NT (not Win32s).
These Delphi 1 classes have the
same functionality as the 32-bit ver-
sions. Data can be freely shared
between 16/32-bit applications (in-
cluding notification of update). The
64Kb segment limit does not apply.

Data Sharing Issues
Whenever there is a need to pro-
vide concurrent access to data,
there are several areas which need
to be addressed.

Data integrity. Whenever data is
being updated by a thread, no
other thread should be allowed up-
date access to that data until the
update is complete. If, for example,
you allowed two programs free ac-
cess to the same memory area
there is a very high likelihood of
data becoming corrupted. Concur-
rent update is definitely a no-no.
But what about the situation where
a thread is updating data and there
are threads which need to read the
data? Should the readers be locked
out while the data is being updated
or should they be allowed to read
data while it is being updated? The
answers are Yes and Yes! That is,
there are no fixed rules. It depends

upon the nature of the data. Usu-
ally, if the data is important or com-
plex (eg business data which needs
several pieces of information to be
updated as a set before it is mean-
ingful or valid) read access must be
blocked until the data has been
fully updated. However, if the data
is not so important it is up to you,
as a system designer, to decide if it
is OK to read partially updated
data. The important point is that
you are aware of the nature (and
implications) of the problem. The
class described here caters for
both approaches. Data access con-
trol is provided by TEnque class
which makes use of Mutex, Sema-
phore and Event kernel objects.

Avoiding data duplication. Data
sharing should not require duplica-
tion of data. This ensures that you
only update data in one place. If
you consider that the designers of
Windows 95/NT have made great
strides towards keeping applica-
tions apart you may think that it is
extremely difficult to share data be-
tween applications. This is not the
case. The designers have thought
ahead and provided some pretty
nice mechanisms to provide this
capability. Using these techniques
we only ever have one copy of the
data on the workstation. This is
provided by the TSharedMemory
class which makes use of memory
mapped files (which are not files in
the traditional sense).

Performance. Data sharing
should not cause the application to
grind to a halt. As we are using
facilities built into the operating
system don’t blame me if this is the
case!

OnChange notification. When
the data has been updated should
we be notified? With the advent of
data aware components it would
seem criminal not to implement
this capability. The class described
has an OnChange event to allow the
process to be informed whenever
the data is changed by any process
on the system.

Let’s try... but finally.... The
classes make extensive use of try-
finally blocks. This is to ensure
that we do not accidentally hold
any resources. Once we venture
into the inter-process arena we
need to be extremely careful about
releasing resources as soon as pos-
sible (and certainly when our appli-
cation encounters a problem). If we
fail to release a lock, we may cause
other applications to fail or hang. If
our program terminates this may
not be a problem as Windows will
usually clean up the resource us-
age and other applications will
spring to life – however see the
discussion of Semaphores later for
a very nasty problem. The worst
case scenario is when an applica-
tion has an error, does not release
a lock, but keeps running.

Resource Access With TEnque
The TEnque class has been designed
to control access (ie control who is
allowed to have read/update ac-
cess at any particular time) to any
named global resource on a work-
station. It is called TEnque as the
functionality of this object was pro-
vided on the IBM/MVS mainframe
operating system many years ago
by waiting on an Enque event. Who
said mainframes have had their
day?

The TEnque class provides for ex-
clusive access (update in data
terms) and shared access (read in
data terms). It does this using three
objects (Mutex, Semaphore and
Event) which were introduced
along with the Win32 API. These
objects are system wide and are
known as Kernel objects; this al-
lows each process to have com-
mon knowledge of the state of
these objects. There are several
APIs available to create, destroy
and change the state of these ob-
jects. Table 1 shows the API calls
we will use to maintain access con-
trol, along with a brief description
of how they are used. There are
other APIs (and options) for these

36 The Delphi Magazine Issue 17

objects which are not discussed
here. See the on-line help or the
Win32 reference for further details.

A process is granted access to a
Kernel object by making a Wait-
ForSingleObject or WaitForMulti-
pleObjects API call (from now on
this will be referred to as Wait-
For...). These calls will only return
successfully if the objects are cur-
rently available. A process can
make nested calls to these APIs and
get, in effect, more than one lock on
the resource. If this is done (for
Mutex and Semaphore objects) , there
should be an equal number of calls
to release the resource.

Kernel Objects
When discussing the state of kernel
objects the official term used to
describe the current state is sig-
nalled or non-signalled. I find these
terms confusing and difficult to re-
member so I tend to use available
or not-available instead. Table 2
shows, for each kernel object, the
circumstances under which the ob-
ject is available (signalled).

Mutex Object
Mutex is short for mutually exclu-
sive. Mutex objects are ideal for situ-
ations where you need to get
exclusive access to a resource.
This is used in the TEnque class for
two purposes. The first being to
control update access to the user
data (one at a time). The second is
to get temporary control during
critical routines within the class it-
self. For example, when releasing
read access, we get ownership of
the Mutex then determine if we are
the last active reader. By getting
ownership of the Mutex we ensure
that all threads waiting on the
object are locked out until we
release it.

Semaphore Object
We will use a Semaphore object to
keep a count of the number of read-
ers. Semaphore objects are different
to Mutex objects because they are
not owned by any thread. Multiple
processes can call the relevant
APIs to increase or decrease the
count (within the specified limit).
For example, if a semaphore were
created with a limit of 5, then five

calls to the WaitFor... APIs (from
any process, including multiple
calls from the same process) would
be allowed to decrease the count
until it reached zero. If another
WaitFor... call were made the task
would be suspended until a Re-
leaseSemaphore call was made to in-
crease the count. In the TEnque
class the initial count is set to

nearly 2 billion so this should never
happen! That is, the Semaphore is
always available. We use the Sema-
phore simply as a counter for the
number of readers.

One problem with Semaphore ob-
jects is that there is no easy way to
know the current count which
makes it difficult to determine if a
process can get update access. We

CreateMutex
CreateSemaphore
CreateEvent

When we call any of these three create APIs
Windows will determine if the kernel object
already exists and will create it if needed. If it
already exists it simply passes a handle back to us.
The name of each of these objects must be unique.
For example, a Mutex and Event cannot have the
same name. We cater for this by adding a suffix to
the end of the name passed to the TEnque
constructor.

WaitForSingleObject Suspends the thread until the object is available.

WaitForMultipleObject Suspends the thread until all the objects are
available (all or nothing: as we use it).

ReleaseMutex Indicates to Windows that we wish to relinquish
ownership of the Mutex.

ReleaseSemaphore Indicates to Windows that it should reduce the
count by the amount specified. In this class we only
ever reduce by one at a time.

ResetEvent This is called whenever we have obtained read
access to the resource. It indicates that readers are
active and stops threads getting update access to
the object (as they wait for the event to become
available).

SetEvent This is called when the last reader has finished and
makes the event available. It indicates that update
access can be granted.

CloseHandle This is called for each kernel object in the
destructor to free windows resources. Windows
will release ownership for the object.

➤ Table 1: Access control API calls

Kernel Object When Available (Signalled)

Mutex The Mutex object is available as long as no thread currently
has ownership. Ownership is granted via a successful
WaitFor... call which causes the object to be marked as
not-available (non-signalled) for other threads. When the
thread calls ReleaseMutex it relinquishes ownership (subject
to nested calls) and the state becomes available (signalled)
once more.

Semaphore The Semaphore object is available as long as the count is
greater than zero. Each call to WaitFor... reduces the
count. When it reaches zero it is marked as not-available. It
remains in this state until a thread calls ReleaseSemaphore
which increases the count.

Event The Event object is available after a call to SetEvent. It
remains available until a call is made to ResetEvent.

➤ Table 2: Signalling of Kernel objects

January 1997 The Delphi Magazine 37

control update access indirectly by
the use of an event object. A
second and more serious problem
is that Windows does not clean
up the Semaphore count if an
application aborts: see later...

Event Object
Event objects, not surprisingly, are
used to signal when some event
has occurred. They can be either
auto-reset or manual-reset objects.
For an auto-reset Event, when a
thread successfully calls Wait-
For... Windows changes the state
of the Event back to not-available. A
subsequent call to WaitFor...
would not return successfully until
SetEvent was called again. For man-
ual-reset Events Windows does not
change the state of the Event after
the WaitFor... call. This means that
multiple threads will be released
without the need to call SetEvent
again. The manual-reset Event is ex-
actly what we need. We call
SetEvent when the last reader ends
and the Event must remain avail-
able until ResetEvent is called. Any
updater making a request will find
that the Event is available. When-
ever a reader starts a call is made
to ResetEvent to mark the Event as
not-available to inhibit the granting
of update access.

TEnque: Creating The Object
Listing 1 shows a functional ver-
sion of the constructor for the
TEnque class. The constructor ac-
cepts a parameter which will be
used as the base name for the ob-
ject. To ensure that the three ker-
nel objects have unique names we
add a suffix for each object type
(_M, _S, _E).

To discuss the API calls used to
create these objects we need to
look at the declaration for each.
They are found in WINDOWS.PAS.
For each of these API calls the first
parameter is a pointer to a security
attributes structure. As this is be-
yond the scope of this article we
pass nil to accept the default secu-
rity descriptor provided by
Windows. The final parameter
(lpName) is the name to be used to
create the object (each with its
own suffix). Table 3 describes the
key points of the three functions.

Controlling Update Access
Listing 2 shows the two methods
which get and release update ac-
cess to the resource. Before we can
get update access to the object,
both the Mutex and Event objects
must be available. The Mutex object
ensures that we cannot get access

when another thread owns the
Mutex, and the Event object will only
be available if there are no readers
active. So, we wait for both objects
using the WaitForMultipleObjects
call. If either object is not available
Windows will suspend the thread
until they are both available. When

constructor TEnque.Create(Name: string);
var WrkName: array[0..255] of char;
begin
 { Ensure there is enough room for required suffix }
 FName := Copy(Name,1,253);
 FExclusiveAccess := CreateMutex(nil, FALSE,
 StrPCopy(WrkName, FName+MUTEX_SUFFIX));
 if FExclusiveAccess = 0 then
 Raise Exception.CreateFmt(
 ’Error creating the Mutex object. RC was %d’,[GetLastError]);
 FNumberOfReaders := CreateSemaphore(nil,MAX_SEMAPHORES,MAX_SEMAPHORES,
 StrPCopy(WrkName,FName+SEMAPHORE_SUFFIX));
 if FNumberOfReaders = 0 then
 Raise Exception.CreateFmt(
 ’Error creating the Semaphore object. RC was %d’,[GetLastError]);
 FReadersActive := CreateEvent(nil, TRUE, TRUE,
 StrPCopy(WrkName, FName+EVENT_SUFFIX));
 if FReadersActive = 0 then
 Raise Exception.CreateFmt(
 ’Error creating the Event object. RC was %d’,[GetLastError]);
end;

➤ Listing 1

function CreateMutex(lpMutexAttributes: PSecurityAttributes;
 bInitialOwner: BOOL; lpName: PChar): THandle; stdcall;

The second parameter (bInitialOwner) indicates if we wish to be granted
immediate ownership of the Mutex as it is being created (this would block
other access). We pass False as ownership will be requested explicitly.

function CreateSemaphore(lpSemaphoreAttributes:
 PSecurityAttributes; lInitialCount, lMaximumCount: Longint;
 lpName: PChar): THandle; stdcall;

The third parameter (lMaximumCount) is the maximum count allowed for the
semaphore. As we will allow any number of readers we set this figure to
$7FFFFFFF (2 billion minus 1!). The second parameter (lInitialCount)
indicates the initial count for the Semaphore. This must be between 0 and
lMaximumCount. As we are going to allow for an unlimited number of readers
this is also set to $7FFFFFFF. Every call to WaitFor... will decrease the count.
As there is no possibility of the count reaching 0 (at least on my PC!) the
Semaphore will never be the cause of a delay waiting for an object. Once a
reader has finished it calls ReleaseSempahore which increases the count.
When the count reaches $7FFFFFFF again we know that this is the last reader
running. The importance of this fact is covered in the section Controlling
Read Access.

function CreateEvent(lpEventAttributes: PSecurityAttributes;
 bManualReset, bInitialState: BOOL; lpName: PChar): THandle;
 stdcall;

The second parameter (bManualReset) indicates if we want to create a
manual reset Event. We pass True as this is indeed what we are going to do.
False would indicate an auto reset Event. The third parameter indicates the
initial state for the object. We pass True as we want the initial state to be
available.

➤ Table 3

38 The Delphi Magazine Issue 17

the API returns we can accept a
return value of WAIT_OBJECT_0 or
WAIT_ABANDONED – this latter value is
a special case which means that
the thread which previously
owned the Mutex terminated with-
out releasing the object cleanly.

Before we do this, a check is first
made to ensure that we do not
currently have read access and an
error is generated if this is the case.
This restriction is required as,
when readers are active, the event
is not available. The WaitForMulti-

pleObjects would not return in this
situation and the process would be
suspended. This is not as bad as it
seems as write access implies read
access. It just means that you
cannot change from read access
straight to update access. You
would need to release read access
first then get update access.

Releasing update access is very
straightforward. By definition, we
already have ownership of the
Mutex object at this point so we
simply call ReleaseMutex to mark it
available (note: we don’t do
anything with the Event object here
as the status of the Event is cont-
rolled by the number of readers,
the WaitForMultipleObjects call in
GetUpdateAccess did not alter the
state of the Event object).

Controlling Read Access
Listing 3 shows functional versions
of the two methods which get and
release read access to the resource
along with the Lock and Unlock
methods used in the method
ReleaseReadAccess.

To get read access we need to
wait for the Mutex and Semaphore ob-
jects. As the Semaphore is simply a
counter (with no practical limit in
our case) we are really only waiting

function TEnque.GetUpdateAccess: Boolean;
var WaitResult: LongInt;
 WaitObjects: array[0..1] of LongInt;
begin
 if FReadlocks > 0 then
 Raise Exception.Create(
 ’Cannot grant update access while have read access ’)
 else begin
 WaitObjects[0] := FExclusiveAccess;
 WaitObjects[1] := FReadersActive;
 WaitResult := WaitForMultipleObjects(2,@WaitObjects,TRUE,FWriteTimeout);
 case Waitresult of
 WAIT_OBJECT_0,WAIT_ABANDONED:
 begin
 Inc(FUpdateLocks);
 SetStatusString(ENQ_OK);
 Result := True;
 end;
 WAIT_TIMEOUT:
 Raise Exception.Create(’Timed out waiting to get update access’);
 else
 Raise Exception.CreateFmt(
 ’Got error %d while waiting for update access’,[GetLastError]);
 end;
 end;
end;

procedure TEnque.ReleaseUpdateAccess;
begin
 if FUpdateLocks > 0 then begin
 Dec(FUpdateLocks);
 ReleaseMutex(FExclusiveAccess);
 end else
 Raise Exception.Create(
 ’Invalid call to ReleaseUpdateAccess - no current update access’);
 end;

➤ Listing 2

function TEnque.GetReadAccess: Boolean;
var WaitResult: LongInt;
 WaitObjects: array[0..1] of LongInt;
begin
 WaitObjects[0] := FExclusiveAccess;
 WaitObjects[1] := FNumberOfReaders;
 WaitResult := WaitForMultipleObjects(2, @WaitObjects,
 TRUE, FReadTimeout);
 case WaitResult of
 WAIT_OBJECT_0,WAIT_ABANDONED:
 begin
 ResetEvent(FReadersActive);
 Inc(FReadLocks);
 ReleaseMutex(FExclusiveAccess);
 Result := True;
 end;
 WAIT_TIMEOUT:
 Raise Exception.Create(
 ’Timed out waiting for read access’);
 else
 Raise Exception.CreateFmt(’Got error %d when’+
 ’ waiting for read access’,[GetLastError]);
 end;
end;

function TEnque.ReleaseReadAccess: Boolean;
var PreviousCount: LongInt;
begin
 Result := False;
 if FReadLocks = 0 then
 Raise Exception.Create(’No current read access’);
 else begin
 { Lock ensures we get accurate value for number of readers }

 Lock;
 try
 Dec(FReadLocks);
 ReleaseSemaphore(FNumberOfReaders, 1,
 @PreviousCount);
 { If this was the last reader, mark event as
 available }
 if PreviousCount = $7FFFFFFE then
 SetEvent(FReadersActive);
 Result := True;
 finally
 UnLock;
 end;
 end;
end;

procedure TEnque.Lock;
var WaitResult: LongInt;
begin
 WaitResult := WaitForSingleObject(FExclusiveAccess,
 Max_Maintenance_Delay_Expected);
 case WaitResult of
 WAIT_OBJECT_0,WAIT_ABANDONED:
 ; { We are OK }
 else
 Raise Exception.Create(
 ’Failed to get lock! THIS SHOULD NOT HAPPEN!’);
 end;
end;

procedure TEnque.UnLock;
begin
 ReleaseMutex(FExclusiveAccess);
end;

➤ Listing 3

January 1997 The Delphi Magazine 39

for the Mutex. Once we get access to
this, the first thing we do is call
ResetEvent for the Event object.
This marks the object as not
available (ie readers are active).
This means that no update access
request will be satisfied until a
SetEvent is called (described in the
next paragraph). We then release
the Mutex as we only needed to get
ownership of it to ensure that we
call the ResetEvent before any up-
daters get ownership (remember,
they wait for the Mutex also).

Releasing read access is the
most critical part of the whole
process. We need to ensure that we
can accurately detect that the last
reader has ended as we need to call
SetEvent at that time (to indicate
there are no readers active) We
cannot do this by simply calling
ReleaseSemaphore, checking if we
were the last reader then calling
SetEvent. Due to the pre-emptive
nature of Windows 95/NT, between
these calls other processes may
get ownership of objects and
change the situation. We get round
this by calling the Lock method,
which gets access to the Mutex ob-
ject, ensuring that we have total
control. We then call Release-
Semaphore which will increase the
count by one. ReleaseSemaphore ac-
cepts a var parameter (the last pa-
rameter) which will be set to the
count before it was increased. If
this value is $7FFFFFFE we know this
is the last reader ending and call
SetEvent. We then call the UnLock
method to release the Mutex.

Note that in the Lock method the
wait delay is not the standard time-
out value (which could be infinite).
It is set to a small value as, at this
time, there should be no thread
holding an extended lock on the
Mutex object. However, we cannot
pass 0 as it is possible for multiple
processes to be calling Release-
ReadAccess at the same time, so
there is a possibility of a time-out
being returned if we pass 0. If we do
time out an exception is raised,
indicating something is wrong!

Enough Theory, Lets Play...
Now that we understand how to
control access to a resource we can
now play with a simple demo. The

NQDEMO.EXE application allows
you to request read and write locks
to a named resource to visually see
how the applications wait for the
resource to become available. The
listbox shows an activity log for
each instance. Figure 1 shows the
single window which is displayed
when you run the program. You
will need to run multiple instances
of the program. In each instance,
you should request read or write
access. You will see that, while an
instance has read access, other in-
stances can also get read access.
However, no update access will be
granted: they will wait until all
readers have released their locks.
Similarly, if you request update ac-
cess, no other instance will be
granted any access until the
update lock has been released.

A restriction on the TEnque class
is that, for a thread, it is invalid to
be granted update access if you
already have read access (as de-
scribed previously). If you attempt
this an exception will be generated.

A good demonstration to show
inter-process locking is to request
read access for an instance, then
request update access in all the
other instances (they will be sus-
pended). When you release the
read access only one of the waiting
instances will be granted update
access. As you then release each
lock, the instances will be activated
in turn.

If you close the instance without
explicitly releasing the locks (via
the Dirty close button) you will see
that the other instances spring to
life. If you look at the code for this
program (on the disk of course)
you will see that the Enque object is
not freed when you click this but-
ton. This demonstrates Windows is
cleaning up the resources.

Semaphore Blues...
That last sentence is not strictly
correct. Windows does not clean
up a Semaphore object correctly if
the application terminated without
calling ReleaseSemaphore. In the
NQDEMO application, if you get
read locks then click the Dirty
close buttons you will find that no
thread will be granted update ac-
cess. This seems to be because

Windows (even NT) does not keep
track of the count allocated for a
particular thread. If, for example,
an instance of NQDEMO has 3 read
locks and then it does not perform
a clean close, the Semaphore count
will not be decreased when the pro-
gram ends! Try this for yourself.
For one of the instances get several
read locks. Click the Get system
read lock count button to display
the number of reader locks. Then
end the program using the Dirty
close button. In another instance
click the button again: the count
will be the same. This means that
SetEvent will never be called as the
count for the Semaphore is now inva-
lid. Therefore, in applications, it is
essential that the TEnque destructor
is called to clean up. If this situation
ever arises it can only be fixed by
closing all applications to destroy
the Semaphore object.

Data Access With
TSharedMemory
This class provides physical ac-
cess to the shared data by using
memory mapped files. It makes use
of the TEnque class to co-ordinate
the timing of access.

Win32 supports an object called
a memory mapped file. As you
would expect, there are various
tricks you can do with memory
mapped files. This section details
how they are used in this class. The
Delphi on-line help and Win32 API
reference have more information.

A memory mapped file is one
mechanism by which data can be
shared between processes. All
process see the same data. When

➤ Figure 1

40 The Delphi Magazine Issue 17

we create the object Windows allo-
cates space in the swap file for the
file. Once it has been created, you
can simply access it as if it were any
other memory allocated in your ap-
plication. It is that simple! Table 4
shows all the APIs we use to main-
tain memory mapped files along
with a short description for each.

When discussing this class,
there are six areas which need to

be covered: creating the object, in-
ternal control data and processes,
data access co-ordination, mecha-
nism for the notification of update,
destroying the object, and finally
reading without integrity.

Creating The Object
Listing 4 shows the constructor for
the TSharedMemory class. The
TSharedMemory class used in the

demo applications creates and
maintains a single dimension ar-
ray. The constructor has three pa-
rameters: the name, element size
and capacity of the array. All in-
stances which create the TShared-
Memory object must specify the
same values. This is not due to a
restriction of memory mapped
files, it simply allows for the basic
functionality of memory mapped
files to be demonstrated without
getting in too deep!

Before we create the memory
mapped file we create the TEnque
object and get exclusive access to
it. This is to ensure that while the
constructor executes we have total
control.

After creating and getting update
access to the TEnque object we cre-
ate the two memory mapped files.
For the CreateFileMapping API we
indicate that the type will be a
memory mapped file, we want
read/write access, and specify the
size for each. When we have suc-
cessfully created the Ctrl memory

CreateFileMapping We pass a name, type (memory mapped file), size and
access mode (write) to create the object. We get a
handle back for the object.

MapViewOfFile This maps the requested part of the file mapping
object (in our case the whole file) into the process.
The API returns the address of the start of the file in
your process. Once this has returned, the data in the
file can be accessed like any other memory allocated
by your process: you even get access violations if you
go past the end!

UnMapViewOfFile This can be thought of as de-allocating the memory.
Once this has been called it is invalid to try and access
the memory.

CloseHandle De-allocates the memory mapped file from the
process.

➤ Table 4

constructor TSharedMemory.Create(Name: string;
Element_Size,Capacity: LongInt);
var
 WrkName: array[0..255] of char;
 FirstInstance: Boolean;
 MName: string;
begin
 { Truncate name to allow for required extensions }
 MName := Copy(Name,1,249);
 { Create the TEnque object to control access to the
user and control data }
 StrPCopy(WrkName,MName);
 FEnque := TEnque.Create(StrPas(WrkName));
 if not Assigned(FEnque) then
 Raise Exception.CreateFmt(’Failed to create TEnque
object for %s’,[MName]);
 { Lock out all processes until we initialise }
 FEnque.GetUpdateAccess;
 try
 { Create the ’Ctrl’ memory mapped area which is
private to this class and maintained exclusively by this
class }
 StrPCopy(WrkName,MName + ’Ctrl’);
 FCtrlFileMapHandle :=
CreateFileMapping(MEMORY_MAPPED_FILE,nil,PAGE_READWRITE,0,
SizeOf(TSMCtrlDetails),WrkName);
 if FCtrlFileMapHandle <> 0 then begin
 FirstInstance := GetLastError <>
ERROR_ALREADY_EXISTS;
 FCtrlAddress :=
MapViewOfFile(FCtrlFileMapHandle,FILE_MAP_WRITE,0,0,0);
 if FCtrlAddress = nil then
 Raise Exception.CreateFmt(’Failed to create view
of the control file mapping object
%s’,[StrPas(WrkName)]);
 if FirstInstance then begin
 if Capacity < 1 then
 Raise Exception.CreateFmt(’Capacity invalid
for new TSharedMemory object (%d)’,[Capacity]);
 if Element_Size < 1 then

 Raise Exception.CreateFmt(’Element_Size
invalid for new TSharedMemory object
(%d)’,[Element_Size]);
 Fillchar(FCtrlAddress^,sizeof(TSMCtrlDetails),0);
 with FCtrlAddress^ do begin
 Ctrl_Element_Size := Element_Size;
 Ctrl_Capacity := Capacity;
 end;
 end else begin
 if FCtrlAddress.Ctrl_Capacity <> Capacity then
 Raise Exception.CreateFmt(’Capacity invalid
for TSharedMemory object. Was %d, should be %d’,
[Capacity, FCtrlAddress.Ctrl_Capacity]);
 if FCtrlAddress.Ctrl_Element_Size <>
Element_Size then
 Raise Exception.CreateFmt(’Element size
invalid for TSharedMemory object. Was %d, should be %d’,
[Element_Size, FCtrlAddress.Ctrl_Element_Size]);
 end;
 end else
 Raise Exception.CreateFmt(’Failed to create
control file mapping object %s’, [StrPas(WrkName)]);
 { Create the ’User’ memory mapped area which can be
accessed by any user application }
 StrPCopy(WrkName,MName + ’User’);
 FUserFileMapHandle :=
CreateFileMapping(MEMORY_MAPPED_FILE,nil,PAGE_READWRITE,0,
Element_Size * Capacity,WrkName);
 if FUserFileMapHandle <> 0 then begin
 FUserAddress :=
MapViewOfFile(FUserFileMapHandle,FILE_MAP_WRITE,0,0,0);
 if FUserAddress = nil then
 Raise Exception.CreateFmt(’Failed to create view
of the file mapping object %s’,[MName]);
 end else
 Raise Exception.CreateFmt(’Failed to create file
mapping object %s’,[MName]);
 finally
 FEnque.ReleaseUpdateAccess;
 end;
end;

➤ Listing 4

January 1997 The Delphi Magazine 41

mapped file we call GetLastError:
not because we had an error, it is
used to find out if the memory
mapped file has already been
created by another process. If
GetLastError does not return
ERROR_ALREADY_EXISTS we are the
first instance to create the object
and can initialise the Ctrl area. The
base addresses of both memory
mapped files are stored in instance
variables. Once we have created
the memory mapped files we
release the lock on the TEnque
object.

Internal Control
Data And Processes
Listing 5 shows the structure of the
Ctrl area. The Ctrl_Element_Size
and Ctrl_Capacity fields are used
to check that each thread which
creates the object specifies the
same array size and capacity. If a
mis-match occurs the constructor
raises an exception. The Ctrl_Count
contains the current number of
entries in the array. Ctrl_Data_Up-
dated is used to indicate if a thread
actually performed an update.
Whenever the first update lock has
been obtained this flag is set to
False, then, whenever an update
call (Add, Put, Reset) is made, the
flag is set to True. This is used to
determine if processes need to be
notified when the lock is released.
The Ctrl_Num_Windows, Ctrl_WinHan-
dles, Ctrl_NotificationBeenPosted
and Ctrl_Update_Count are dis-
cussed later when we cover the
mechanism for the notification of
update.

Data Access Co-Ordination
The TSharedMemory class provides
GetReadAccess and GetUpdateAccess
along with ReleaseReadAccess and
ReleaseUpdateAccess to allow an
application to explicitly control ac-
cess. If you look at the implementa-
tion for all methods which access
the data (Add, Get, Put, Reset) you
will see that they check to see if the
thread already has the required
access and call the relevant access
routine to ensure that they are
authorised to access the data if this
is not the case.

The Get/Release access routines
have been provided to allow a

program to obtain access (either
read or write) for multiple data ac-
cess calls. If you want to make more
than one data access call, and lock
all other processes out while you
are doing so (a classic case is if you
want to implement a rollback facil-
ity in the case of error), call the
Get[Read/Write]Access method
first, make all your calls to the data
access methods, then call Re-
lease[Read/Write]Access to allow
other processes to obtain access.
If you do not need to hold locks
between individual data access
calls there is no need to call these
routines.

Update Notification
Notification of update has been im-
plemented by posting messages.
This means that the updating
thread will not be held up. When-
ever an OnChange event is set, the
class creates a window using
AllocHWnd (its WndProc is a method
in the class) and stores the window
handle in the Ctrl_WinHandles ar-
ray. Then, whenever a process has
updated the data, a message is
posted to all windows just before
releasing the last update lock. To
avoid flooding the system with
multiple messages (the target ap-
plication may be busy doing other
work) the Ctrl_NotificationBeen-
Posted array is used to indicate if a
message has already been posted.
Thus, a duplicate message will not
be sent if this flag is set.

When the WndProc method proc-
esses the message it will clear this
array value to indicate that it has
processed the update. As posted
messages are received asynchro-
nously, we may get a message
whilst we are updating ourselves. If

this happens, we don’t call the
OnChange event, but we do clear the
flag: when we finish updating we
will be posted again.

A problem I encountered was
that some OnChange notifications
were not being processed in the
16-bit version when I stressed the
system by running multiple pro-
grams. This was a timing problem
which meant that, after calling the
FOnChange event in the WndProc
method an update was being per-
formed in another thread before I
reset the flag. Hence the update
was not posted. As I wanted to keep
the 32/16-bit versions compatible I
had to implement a technique that
would work in the 16-bit version.
After exploring various options I
decided to implement a simple
counter field called Ctrl_Up-
date_Count in the Ctrl area. This
counter is incremented every time
the NotifyDataChanged method is
called and is passed as the lParam
parameter in the PostMessage.
Then, when the message is proc-
essed, a comparison is made be-
tween this and the current value of
Ctrl_Update_Count. If they are dif-
ferent the WndProc posts a new
message to itself with the new
count in lParam which will trigger
the OnChange event again. Only
when the counts match is the
Ctrl_NotificationBeenPosted flag
cleared. If there was not a require-
ment to be compatible with 16-bit
apps this could be removed.
However, the overhead of this
processing is negligible.

Destroying The Object
Destroying this object is simplicity
in itself. All we need to do is call
UnMapViewOfFile and CloseHandle

type
 PSMCtrlDetails = ^TSMCtrlDetails;
 TSMCtrlDetails = packed record
 Ctrl_Element_Size: LongInt;
 Ctrl_Capacity: LongInt;
 Ctrl_Count: LongInt;
 Ctrl_Data_Updated: Boolean;
 Ctrl_Num_Windows: LongInt;
 Ctrl_WinHandles: array[1..Max_OnChange_Notifications] of LongInt;
 Ctrl_NotificationBeenPosted:
 array[1..Max_OnChange_Notifications] of Boolean;
 Ctrl_Update_Count: LongInt;
 end;

➤ Listing 5

42 The Delphi Magazine Issue 17

for each of the memory mapped
files. We then destroy the TEnque
object.

Reading Without Integrity
The class provides a boolean prop-
erty called ReadWithoutIntegrity
which, if set to True, will cause the
class to always allow read access
regardless of the state of the syn-
chronisation objects: no reference
to the TEnque object is made. A sin-
gle restriction imposed is that this
value cannot be set if you currently
have read locks.

Demo Applications
Along with NQDEMO described
previously, two other programs
have been provided on the disk:
SMTEST and SMSHOW. Figures 2
and 3 show example forms during
execution.

To demonstrate data sharing
you should run at least two copies

of SMTEST and at least one copy of
SMSHOW. The SMTEST program
simply adds entries (containing
the process id, thread id and text)
to an array and the SMSHOW appli-
cation is notified when the data has
changed via the OnChange event: it
simply displays the current con-
tents of the array and the total
number of entries.

In SMTEST, you should enter
some basic text to be added to the
array (the entry number will be ap-
pended), the number of entries
that this instance should add, the
write delay (ie how long to hold the
update lock) and an interval delay
(to simulate other processing).
When you click the Start update
button the program will simply
loop round and add entries to the
array, obtaining/releasing locks as
required.

If you have more than one copy
of SMTEST running you will see

that the entries in the array contain
items added by each instance. The
activity log at the bottom of the
form shows how long the process
waited to get a lock, a line to indi-
cate where it added the text to the
array, how long it kept the lock, and
finally how long it went to sleep and
did nothing.

If you have multiple copies of
SMSHOW running you will see that
they are all updated whenever the
data is changed. The SMSHOW ap-
plication also has a button Reset
Array. If you click this you will see
that the array contents are reset.

If you also run the NQDEMO pro-
gram while SMTEST and SMSHOW
are running you will see that, if you
obtain a lock in NQDEMO, the
SMTEST program is suspended un-
til you release the lock.

Also, if you use the NQDEMO
program to get a lock then attempt
to start an instance of SMTEST it
will appear that the program has
not started. This is because initial-
isation is done in FormCreate and
the constructor for the TShared-
Memory class waits to get exclusive
access to the Mutex object. Once
you release the lock the SMTEST
form will appear (in a real applica-
tion you would not do this initiali-
sation in the FormCreate for this
reason).

The demo programs specify an
array containing 2000 elements to
ensure that the total size is greater
than the 16-bit 64Kb segment limit.

Changes For Delphi 1
16-bit versions of the two classes
described here have been created.
This section details the issues
raised during this exercise, some of
which certainly educated me!
Rather than create common units
with loads of $IFDEFs I have created
16-bit versions of the units for the
classes (ENQUE16, SHAREM16)
and demo apps (NQDEMO16,
SMTEST16, SMSHOW16) to hope-
fully simplify things.

To call the Win32 APIs in Delphi1
it is necessary to perform thunking
calls to the APIs in KERNEL32.DLL
and USER32.DLL. Thankfully, as
this is now common practice, a
mechanism to do this has been
released to the public domain. I

➤ Figure 3

➤ Figure 3

January 1997 The Delphi Magazine 43

used a unit provided by Christian
Ghisler. The unit he created,
CALL32NT, has been used to do the
thunking. See the source for this
unit on the disk as it describes how
this is done. I have made a single
change to the Call32NT unit: I made
the procedure XLatHWnd public as I
needed to make use of it (see later).

Basically, for each API you wish
to use, you call a function called
Declare32 to specify the API you are
going to call and pass the argument
types. It stores this information
internally to know how to convert
your 16-bit parameters to 32-bit
parameters and returns a unique id
back to you.

For each API you intend to call,
you need to define a procedure
type variable. The procedure type
specifies the expected parameters,
along with an extra parameter at
the end which is the id returned
from the call to Declare32. Each of
these variables are set to the
address of the function Call32.
Therefore, Call32 is called for all
the thunk calls. It uses the id to
determine how to convert the
parameters on the stack. It calls the
relevant Win32 API, then, on re-
turn, amends the stack so that we
can access any function return
values. See the unit THUNK_32
where I do all initialisation.

There are certain constants used
in the APIs we are calling which are
defined in the Delphi 2 unit
WINDOWS.PAS but not declared in
Delphi 1. I have created these con-
stants in unit WIN32DEF.PAS on the
disk. Where there were name
clashes with WINDOWS.PAS I have
changed the name slightly in the
new unit.

You will see that several APIs
either return 32-bit flat addresses
or expect them as parameters. As
we cannot use the Pointer type (as
this is the beloved segment style in
Delphi 1) they are defined as a
LongInt, which is the same length.
Thus in the code, after making a
call to a Win32 API which returns
an address, we compare the result
to 0 rather then nil (it has the same
effect though).

Finally, something which caused
me a few problems was that the
size of the Ctrl area was different

in Delphi 1 and Delphi 2: this was
caused by the compiler packing
the structures differently, so when
I was attempting to run 16-bit and
32-bit apps at the same time I was
getting very strange effects. Once I
identified the problem I added the
packed keyword to the TSMCtrlDe-
tails and TArray_Element record
structures to avoid this.

TEnque For Delphi 1
The Delphi 1 version of TEnque is
found in ENQUE16.PAS and porting
it was the first complication I ran
into. When a WaitFor...Object call
was made, the whole address
space was suspended if the objects
were not currently available. This
meant that all my other 16-bit apps
(including Delphi) were frozen out
until the Wait... call completed. If
the lock was being held by another
16-bit app (which it was) it could
not release the lock as the address
space was suspended... Well,
Ctrl+Alt+Del fixed that particular
problem!

After first suspecting that it was
a Windows 95 problem I did some
testing on NT which showed that
this was also the case for 16-bit
apps on NT. Although synchronisa-
tion objects (such as a Mutexes) are
supposed to be associated with a
thread this seems not to be the
case if you attempt to use these
objects from 16-bit apps. I’m not
surprised really. I find it amazing
that so much can work via thunking
anyway! Although this could be
circumvented on NT by running
each 16-bit application in its own
address space this is a bit over the
top.

After a bit of head scratching I
then hit upon the very simple idea
of calling the WaitFor... APIs in a
loop (which would give up after the
required time-out period), specify-
ing 0 as the time-out value and
checking the result to see if we got
control of the objects. If we didn’t I
put the process to sleep for 50 mil-
liseconds (via the Win32 Sleep API)
then tried again. Bingo! It worked.
The performance monitor on NT
4.0 showed less than 2% CPU usage
with eight 16-bit apps looping to
get a read lock which was not
currently available.

TSharedMemory For Delphi 1
The two areas which complicated
things when porting this class over
to Delphi 1 were firstly, that 16-bit
window handles (as used in the
NotifyDataChanged method) are not
compatible with Win32, and sec-
ondly the difference between the
32-bit flat memory architecture
and the old segmented 16-bit
architecture.

The first problem was easily
solved. The Call32NT unit has a pri-
vate procedure called XlatHwnd
which determines the 32-bit handle
for a given 16-bit window handle. I
simply made it public by defining
the function in the interface sec-
tion. Thus, in the Ctrl array, I
stored the 32-bit handle. If a 32-bit
application updates the data,
Windows will send the message to
our 16-bit WndProc. When a 16-bit
application needs to notify that an
update has been made, it simply
calls the 32-bit version of PostMes-
sage. This ensures that all WndProcs
(including the 16-bit ones) will get
the messages. The original 16-bit
handle is stored to allow it to be
destroyed.

The fact that both the 16-bit and
32-bit versions of this class are
dealing with the 32-bit flat memory
architecture has proved to be less
of a problem than I originally
expected.

If you recall, the TSharedMemory
constructor creates two memory
mapped files: a small Ctrl file
which contains internal informa-
tion, and a second file for the real
user data. The user data is not a
problem at all as it is only ever
copied in or out via calls to the
32-bit API MoveMemory (for details
see the additional comments in the
file THUNK_32.PAS on the disk).
The TSharedMemory class never uses
or creates a 16-bit pointer to this
data. It has no need to. However,
the Ctrl area is unfortunately a
different matter. This is accessed
frequently within the TShared-
Memory class via the FCtrlAddress
pointer. Therefore, once we have
created the memory mapped file
we need to convert the flat 32-bit
address to a 16-bit version. This
is done using the function
Convert32BitAddrTo16.

44 The Delphi Magazine Issue 17

Observations
On The 16-Bit Version
There is no doubt that 16-bit appli-
cations get a raw deal when it
comes to obtaining access to the
synchronisation objects. I ran a
test with four 32-bit versions of
SMTEST, four 16-bit versions of
SMTEST, four 32-bit versions of
SMSHOW, four 16-bit versions of
SMSHOW, one 32-bit version of
NQDEMO, and one 16-bit version of
NQDEMO.

The 16-bit SMTEST programs
were updating every 100 millisec-
onds, the 32-bit versions event 500
milliseconds. The 32-bit copies of
SMTEST were running at approxi-
mately 5 times the rate of the 16-bit
versions. I partly suspect that this
is caused by the sheer processing
involved in the OnChange event
handler, effectively locking up the
16-bit address space. For example,
when I clicked the Reset array
button for a 32-bit app, the array
was reset almost immediately.
However, for the 16-bit apps, it

sometimes took 10-15 seconds for
the array to be reset. Admittedly
this was on a totally stressed
system [Sounds just like I feel...
Editor].

Finally...
The demonstration programs and
classes described in this article
only touch the surface of this
whole area. To give these topics
justice would require several
chapters of a book.

In fact, the excellent Advanced
Windows by Jeffrey Richter does
exactly that! The TEnque object was
created after reading his discus-
sion of synchronisation objects,
although I have approached the
last reader problem in a different
way.

This article barely touches on
memory mapped files. Due to lim-
ited space I had to implement a
simple version which just allocated
a fixed file size. Don’t let this put
you off. For example, a different
class I created dynamically grows

the memory mapped file as you
add more data (as a standard file
would). There is no restriction to
the initial size. Again, if you want to
pursue this area the Advanced
Windows book will provide you
with all the information required.
The Win32 API reference, or nu-
merous articles on Microsoft’s
MSDN CD-ROM, are also a good
source of information.

I hope you found this article
informative and useful. Obviously,
if you want to create a new class
with different functionality you can
totally redesign the classes. They
were created to simply provide and
example of memory mapped files
and synchronisation objects and
how they could interact.

John Chaytor is a freelance pro-
grammer who lives and works in
Brighton, UK, and can be con-
tacted via Compuserve as
100265,3642

46 The Delphi Magazine Issue 17

	Data Sharing Issues
	Resource Access With TEnque
	Kernel Objects
	Mutex Object
	Semaphore Object
	Event Object
	TEnque: Creating The Object
	Controlling Update Access
	Controlling Read Access
	Enough Theory, Lets Play...
	Semaphore Blues...
	Data Access With TSharedMemory
	Creating The Object
	Internal Control Data And Processes
	Data Access Co-Ordination
	Update Notification
	Destroying The Object
	Reading Without Integrity
	Demo Applications
	Changes For Delphi 1
	TEnque For Delphi 1
	TSharedMemory For Delphi 1
	Observations On The 16-Bit Version
	Finally...

